martes, 28 de octubre de 2014

¿Describe el procedimiento por medio de la cual en las plantas (vegetales) se produce la sustancia química especializada llamada clorofila?
La clorofila es un pigmento (material que absorbe de manera selectiva partes del espectro de la luz, lo que le da su característico color) característico de las plantas (también encuentras a la clorofila en algas y bacterianos). De hecho etimológica mente su nombre proviene del griego "chloros", o sea verde, y "phylon", de hoja - entonces qué más claro, la palabra se refiere literalmente a aquello que le da su color verde a las hojas.

Volviendo al tema de la absorción de parte del espectro electromagnético de la luz, ocurre que la clorofila no es buena para absorber aquella porción asociada al verde en este espectro, lo que le da su característico color.

 Las plantas la clorofila sirve para la fotosíntesis, proceso que le permite a estas obtener energía para vivir a partir de la luz. De manera muy básica, se convierte la energía proveniente de la luz en energía química. La luz llega a la planta, que tiene en sus hojas clorofila; estos pigmentos absorben la luz, y se produce un flujo de electrones que lleva a su vez a reacciones químicas de diferente naturaleza; entre otras cosas, el agua (H2O) se separa en hidrógeno y oxígeno el que a su vez es liberado a la atmósfera, cosa de vital importancia para nuestra atmósfera. Asimismo, se fija el dióxido de carbono, otra cosa a favor sobretodo en nuestros tiempos.

Entonces, de manera muy resumida, la clorofila sirve para la fotosíntesis en las plantas, que a partir de la luz, más el agua y minerales que absorben de la tierra, generan glucosa para alimentarse, y por otro lado absorben dióxido de carbono y liberan oxígeno a la atmósfera.

¿Qué es un plastidio?
Los plastidios son organelos que se encuentran en las células vegetales y que pueden sintetizar y acumular diversas sustancias. Los tipos de plastidios son:
• Los leuco plastos, que son incoloros y son lugares de almacenamiento de carbohidratos.
• Los cromoplastos, que son amarillos o anaranjados y dan color a las flores y los frutos.
• Los cloroplastos, que son verdes e intervienen en la fotosíntesis, es decir en el proceso por medio del cual los seres autótrofos producen glucosa y oxígeno a partir del dióxido de carbono, agua y de la luz solar.
¿Describe cada uno de los procesos que acontecen durante la fotosíntesis?
La fotosíntesis es un proceso que ocurre en dos fases. La primera fase es un proceso que depende de la luz (reacciones luminosas), requiere la energía directa de la luz que genera los transportadores que son utilizados en la segunda fase. La fase independiente de la luz (reacciones de oscuridad), se realiza cuando los productos de las reacciones de luz son utilizados para formar enlaces covalentes carbono-carbono (C-C), de los carbohidratos. Las reacciones oscuras pueden realizarse en la oscuridad, con la condición de que la fuente de energía (ATP) y el poder reductor (NADPH) formados en la luz se encuentren presentes. Investigaciones recientes sugieren que varias enzimas del ciclo de Calvin, son activadas por la luz mediante la formación de grupos -SH; de tal forma que el termino reacción de oscuridad no es del todo correcto. Las reacciones de oscuridad se efectúan en el estroma; mientras que las de luz ocurren en los tilacoides.
¿Qué es el cloroplasto?
Los cloroplastos son los plastos de mayor importancia biológica; ya que por medio de la fotosíntesis, en ellos se transforma la energía lumínica en energía química, que puede ser aprovechada por los vegetales. Los cloroplastos fueron identificados como los orgánulos encargados de la fotosíntesis, en ellos se transforma la energía lumínica en energía química, que puede ser aprovechada por los vegetales.
¿Describe los fenómenos específicos que la planta realiza con la clorofila?
La pigmentación es la coloración de una parte determinada del organismo de un ser vivo por el depósito en ella de pigmentos. Tales principios son sustancias con propiedades cromáticas e intervienen en numerosos procesos biológicos, tanto en los vegetales como en los animales. En los primeros destacan la clorofila y los carotenoides y en los segundos, la melanina y los pigmentos respiratorios. El color verde de las plantas o el rojo de la sangre están estrechamente ligados a la funcionalidad biológica de las células que contienen los pigmentos correspondientes, los cuales desempeñan un destacado papel en dos procesos vitales: la fotosíntesis y el transporte de oxígeno a los tejidos animales, respectivamente.
¿Qué son los cromoplastos?
Los cromoplastos son un tipo de plastos, orgánulos propios de la célula vegetal, que almacenan los pigmentos a los que se deben los colores, anaranjados o rojos, de flores, raíces o frutos. Cuando son rojos se denominan rodo plastos. Los cromoplastos que sintetizan la clorofila reciben el nombre de cloroplastos. Las plantas terrestres no angiospermas son básicamente verdes; en las angiospermas aparece un cambio evolutivo llamativo, la aparición de los cromoplastos, con la propiedad de almacenar grandes cantidades de pigmentos carotenoides. Ocurre normalmente con la maduración de frutos como el tomate y la naranja. La diferenciación de un cromoplasto no es un fenómeno irreversible, en la parte superior de las raíces de zanahoria, expuesto a la luz, los cromoplastos pueden diferenciarse en cloroplastos perdiendo los pigmentos y desarrollando tilacoides.
Hay cuatro categorías de cromoplastos según su estructura:

Globulosos: los pigmentos se acumulan en gotas junto con lípidos: Citrus, Tulipa.
Fibrilares o tubulosos: los pigmentos se asocian con fibrillas proteicas: Rosa, Capsicum annuum.
Cristal osos: los pigmentos se depositan como cristaloides asociados con las membranas tilacoides: tomate, zanahoria.
Membranosos: membranas arrolladas helicoidalmente: Narcissus
¿Describe los procesos por medio de la cual la planta produce almidones?
El almidón es producido por los vegetales como sustancia nutritiva de reserva, que se almacena principalmente en semillas y raíces, con el objeto de apuntalar el sucesivo ciclo reproductivo. Las plantas producen azúcares a través de: la fotosíntesis solar, el carbono del aire y el agua que envían las raíces. Pero estas sustancias nutritivas no podrían ser conservadas en la semilla en forma soluble, dado que el germen de la flamante simiente, por lo general debe esperar un año o más, con el fin de encontrar condiciones apropiadas para generar un nuevo ciclo vegetativo. Por tanto, la planta transforma el azúcar soluble en almidón insoluble, dotando también al germen de ciertos elementos enzimáticos que le permitirán invertir este proceso, ante la necesidad de azúcar para alimentar la próxima fase germinativa. O sea que en la semilla, el almidón no es más que azúcar almacenado en forma segura y estable en el tiempo. Esta maravillosa efectividad se demuestra cuando logran germinar semillas que han permanecido 4 o 5 mil años en letargo. El azúcar generado por el desdoblamiento del almidón, permite nutrir al germen que despierta, hasta que la plántula puede producir azúcar por sí misma, a través de las nuevas hojas y raíces. Esta función del almidón en la semilla, hace que algunos botánicos lo consideren como el equivalente de la leche materna para el bebé.
¿Qué son los leuco plastos?
 Los leuco plastos son plastidios que almacenan sustancias incoloras o poco coloreadas. Abundan en órganos de almacenamientos limitados por membrana que se encuentran solamente en las células de las plantas y de las algas. Están rodeados por dos membranas, al igual que las mitocondrias, y tienen un sistema de membranas internas que pueden estar intrincadamente plegadas. Los plástidos maduros son de tres tipos: leuco plastos, cromoplastos y cloroplastos. Los leuco plastos almacenan almidón o, en algunas ocasiones, proteínas o aceites. Los cromoplastos contienen pigmentos y están asociados con los colores naranja y amarillo brillante de frutas, flores y hojas del otoño. Los cloroplastos son los plástidos que contienen clorofila y en los cuales tiene lugar la fotosíntesis. Al igual que otros plástidos, están rodeados por dos membranas; la membrana interna, la tercera membrana de los cloroplastos, forma una serie complicada de compartimientos y superficies de trabajo internos.
¿Desarrolla una explicación suficiente útil sobre las fotón  y su trayecto?
Pues los fotones son rayos de luz electromagnéticos que los envía el sol como luz violeta 
¿En dónde está la membrana interna de las plantas?
El cloroplasto está rodeado de dos membranas, que poseen una diversa estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas, pero en menor medida que la membrana interna, que contiene proteínas específicas para el transporte. La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias. También, hay una serie de sáculos delimitados por una membrana llamados tilacoides, que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantofilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetiza. Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio peri mitocondrial; por su parte, el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal.
¿En qué consiste la transportación anterógrada de la sabia bruta laborada?
La savia bruta debe ascender por el tallo de la planta hasta llegar a las hojas. El ascenso se realiza a través del xilema, formando por vasos leñosos. Los vasos leñosos están formados por c, Células alargadas, dispuestas en filas, que mueren al completar su desarrollo y de las que han desaparecido las paredes que las separaban formando un largo tuvo hueco. El ascenso de la savia bruta en contra de la gravedad se produce gracias a varios fenómenos que denominamos tensión- adhesión- cohesión, y son: la presión radicular, la transpiración y la tensión-cohesión.
-Presión radicular: Las células de la raíz tiene una concentración de solutos mayor que la del agua del suelo, esta penetra al interior de la raíz por ósmosis. La continua entrada de agua produce una presión radicular, que es suficiente o que la savia bruta ascienda por el tallo.
-Transpiración: Ocurre en las hojas y consiste en la pérdida de agua por evaporación, al aumentar la transpiración aumenta  la absorción. La pérdida de agua por evaporación produce una fuerza capaz de absorber el agua en la raíz y conducirla por el xilema hasta las hojas. Esta fuerza ejerce una presión que, se denomina tensión y que literalmente "tira" de cada molécula de agua hacia arriba. Y es eficaz por la elevada cohesión entre las moléculas de agua.
Tensión-cohesión: Las moléculas de agua están unidas entre sí por enlaces de hidrógeno. Esto permite una cohesión muy elevada, la tensión que puede soportar una columna de agua sin que llegue a romperse es muy elevada. Interviene la adhesión de las moléculas de agua a las paredes de los finos vasos leñosos, de manera que en la ascensión del agua también interviene la capilaridad.
¿En una plata en la fotosíntesis se describe la fase luminosa y oscura; cual sería la circulación que se lleva de la raíz  a las hojas y cual acontece de la hoja al resto de las plantas?
 La fase oscura de la fotosíntesis, es un conjunto de reacciones independientes de la luz (mal llamadas reacciones oscuras aunque pueden ocurrir tanto de día como de noche, mas se llaman así por la marginar fotogénica ya que se desarrolla dentro de las células de las hojas y no en la superficie celular de las mismas) que convierten el dióxido de carbono, el oxígeno y el Hidrógeno en glucosa. Bien Estas reacciones a diferencia de las reacciones lumínicas (fase luminosa o fase clara), no requieren la luz para producirse (de ahí el nombre de reacciones oscuras). Estas reacciones toman los productos generados de la fase luminosa (principalmente el ATP y NADPH) y realizan más procesos químicos sobre ellos. Las reacciones oscuras son dos: la fijación del carbono y el ciclo de Calvin.




No hay comentarios:

Publicar un comentario